

SFPP-XGS-OLT-N1-I-AT1V2-C

ADTRAN® Compatible TAA 10GBase-N1 XGS-PON OLT SFP+ Transceiver (SMF, 1577nmTx/1270nmRx, 20km, SC, DOM, -40 to 85C) Coded to work as N2

Features:

- Dual Wavelength Bidirectional Transceiver
- 1577nm CW Mode EML Transmitter
- 1270nm Burst Mode APD/TIA Receiver
- Single fiber needed
- 2x10 SFP+ Die Cast Housing
- SC/UPC Optical Interface
- 3.3V DC Power Supply
- Industrial Temperature -40 to 85 Celsius
- RoHS compliant and Lead Free

Applications:

- XGS-PON OLT
- Access and Enterprise

Product Description

This ADTRAN® Compatible SFP+ transceiver provides 10GBase-N1 throughput up to 20km over single-mode fiber (SMF) using a wavelength of 1577nmTx/1270nmRx via a SC connector. It is also capable of withstanding rugged environments and can operate at temperatures between -40C to +85C. It is guaranteed to be 100% compatible with the equivalent MSA compliant transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S.-made or designated country end products.")

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Maximum Supply Voltage	Vcc	0	3.6	V
Storage Ambient Temperature	Tstg	-40	85	°C
Operating Case Temperature	Tc	-40	85	°C
Relative Humidity - Storage	RHstg	5	90	%
Relative Humidity - Operating	RHop	5	85	%

Note:

Exceeding the Absolute Maximum Ratings may cause irreversible damage to the device. The device is not intended to be operated under the condition of simultaneous Absolute Maximum Ratings, a condition which may cause irreversible damage to the device.

Absolute Maximum Ratings: Control Function Logic Levels

Parameter	Symbol	Min.	Max.	Unit	Notes
Tx_Disable	Tx_Disable	0	Vcc+0.5	V	LVTTL
Transmitter Fault	Tx_Fault	0	Vcc+0.5	V	LVTTL
Burst-Mode Signal Detect	Rx_SD	0	Vcc+0.5	V	LVTTL
Receive Reset	Rx_Reset	0	Vcc+0.5	V	LVTTL
Receive Data Rate Select	Rate_Select	0	Vcc+0.5	V	LVTTL
Digital RSSI Trigger Input	TRI	0	Vcc+0.5	V	LVTTL
2-Wire Serial Interface Data	SDA	0	Vcc+0.5	V	LVTTL
2-Wire Serial Interface Clock	SCL	0	Vcc+0.5	V	LVTTL
SCL Frequency	tSCL		400	KHz	
Data Hold Time	tHD:DAT	120		ns	

Electrical Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Power Supply Voltage	Vcc	3.135	3.30	3.465	V	
Power Supply Current	Icc		500	750	mA	
Transmitter						
Tx Differential Input Amplitude	VIN	120		820	mV	
Tx Differential Input Impedance	ZIN	90	100	110	Ω	
Tx_Disable = High (Transmitter Off/Disabled)	VIH	0.7*Vcc3		Vcc3	V	1
Tx_Disable = Low (Transmitter On/Enabled)	VIL	0		0.8	V	1
Tx_Fault = High (Fault)	VOH	2.4		Vcc3	V	2
Tx_Fault = Low (Normal)	VOL	0		0.4	V	2
Receiver						
Rx Differential Output Impedance	ZOUT	90	100	110	Ω	
Rx_Data Differential Output Voltage Amplitude	VOUT	300		800	mV	LVCML
Rx_SD = High	VOH	2.4		Vcc3	V	2
Rx_SD = Low	VOL	0		0.4	V	2
Rx_Reset = High	VIH	2.0		Vcc3	V	1
Rx_Reset = Low	VIL	0		0.8	V	1
Rate_Select = High	VIH	2.0		Vcc3	V	1
Rate_Select = Low	VIL	0		0.8	V	1
TRI = High	VIH	0.7*Vcc		Vcc3	V	1
TRI = Low	VIL	0		0.8	V	1

Notes:

1. LVTTL (Control Input).
2. LVTTL (Monitor Output).

2-Wire Serial Interface Logic

Parameter	Symbol	State	Logic	Min.	Max.	Unit
2-Wire Serial Interface Data	SDA	High	LVTTL	0.7*Vcc	Vcc	V
	SDA	Low	LVTTL	0	0.8	V
2-Wire Serial Interface Clock	SCL	High	LVTTL	0.7*Vcc	Vcc	V
	SCL	Low	LVTTL	0	0.8	V

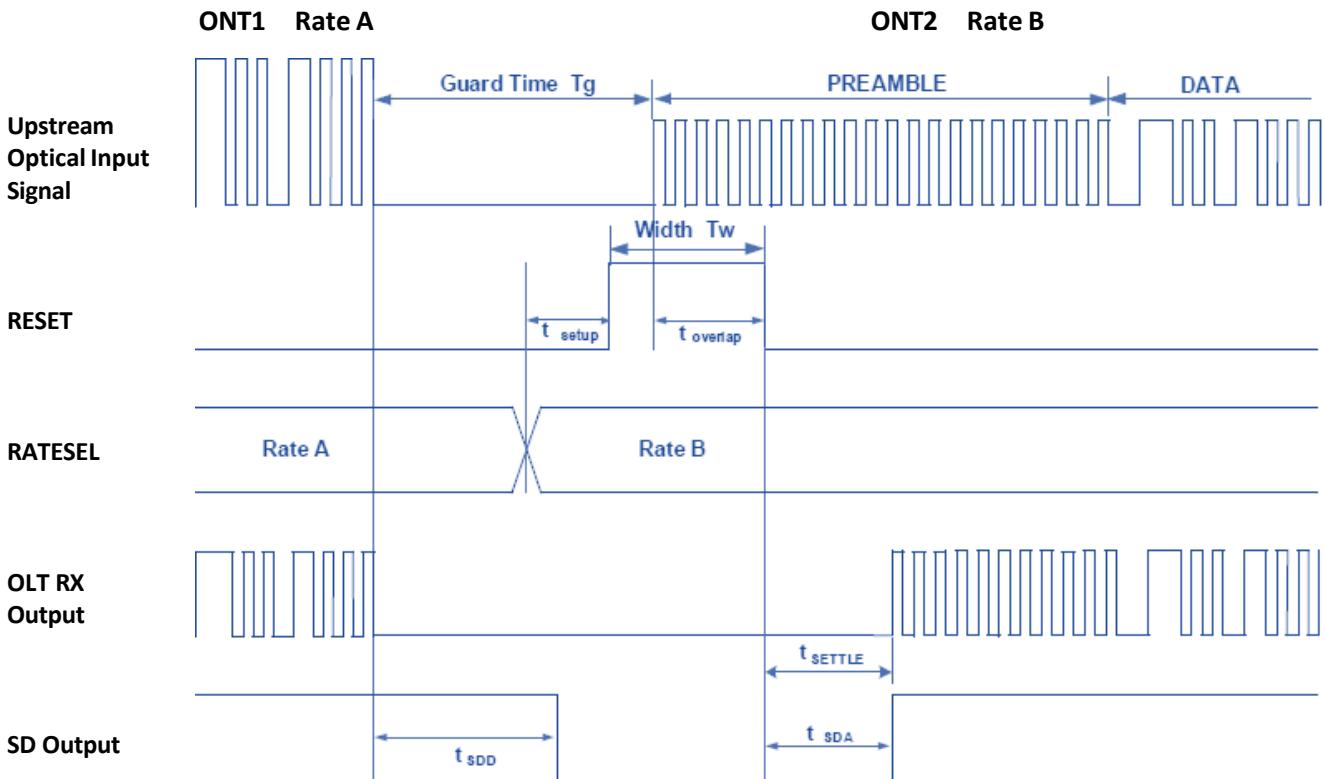
Optical Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Transmitter						
Transmitter Type		CW Mode EML				
Coupling Mode		AC				
Transmitter Signal Rate	Rate	9.953			Gbps	
Average Launch Power	Pavg	2		5	dBm	N1
Tolerance to the Transmitter Incident Light Power		-15			dB	
Optical Center Wavelength	λ_C	1575	1577	1580	nm	
Spectral Width	$\Delta\lambda$			1	nm	
Side-Mode Suppression Mode	SMSR	30			dB	
Extinction Ratio	ER	8.2			dB	
Receiver						
Receiver Type		Burst-Mode APD/TIA				
Optical Center Wavelength	λ_C	1260	1270	1280	nm	
Damage Optical Power		-3			dBm	
Receiver Sensitivity	S			-26	dBm	@9.953Gbps, N1
	S			-27.5	dBm	@2.488Gbps, N1
Receiver Optical Overload	PIN(SAT)	-5			dBm	@9.953Gbps, N1
	PIN(SAT)	-7			dBm	@2.488Gbps, N1
Reflectance of Rx	RL			-20	dB	@1260-1360nm
Dynamic Range	DR	15			dB	
Immunity from Continuous Identical Digits	CID	72			Bits	

Notes:

Sensitivity and Overload Test Conditions:

- 1.9.953Gbps: BER@ 10^{-3} , PRBS $2^{31}-1$, and ER=6.0dB.
- 2.2.488Gbps: BER@ 10^{-4} , PRBS $2^{23}-1$, and ER=8.2dB.

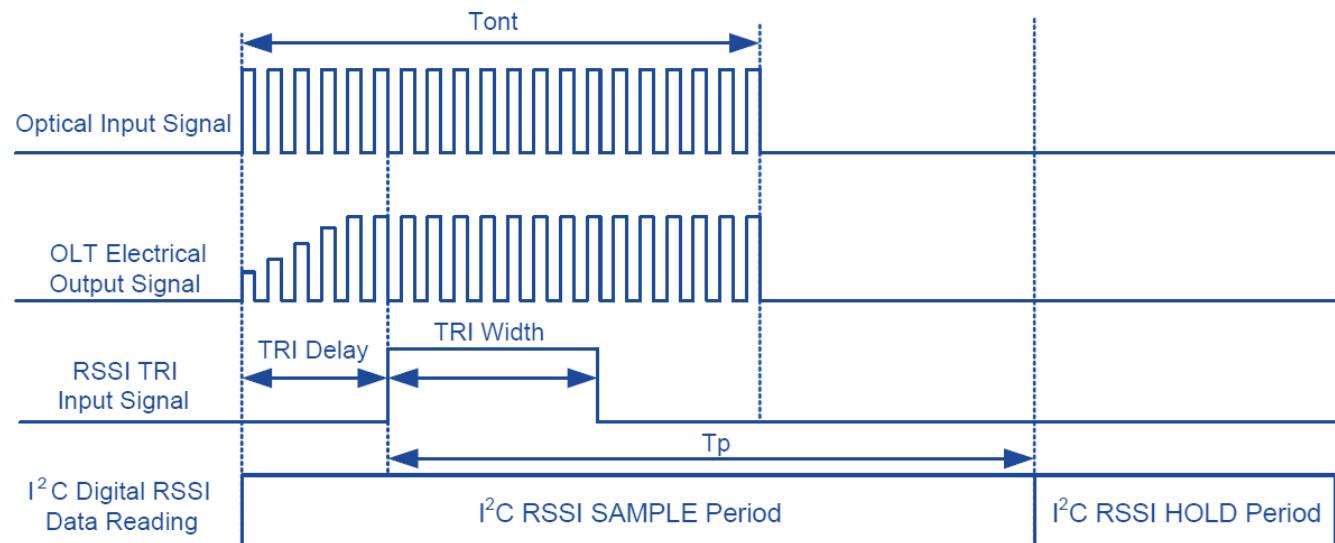

Upstream Timing

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Burst Receiver Settling Time	T_SETTLE			100	ns	
Burst Signal Detect Assert	T_SDA		25	100	ns	
Burst Signal Detect De-Assert	T_SDD		100		ns	1
Guard Time	Tg	51.4			ns	
Reset Pulse Width	Tw	25			ns	
Reset Time Overlapping Preamble	T_overlap	0			ns	2
Setup Time of Rate Level for Following Burst	T_setup	5			ns	

Notes:

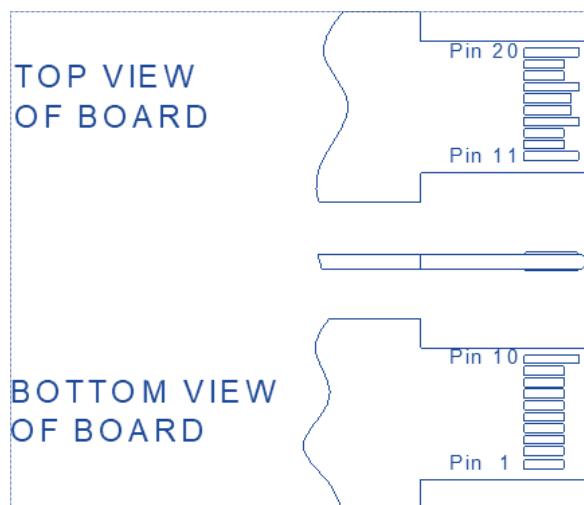
1. Auto reset function is applied. Signal detect de-assert time is about 100ns forced by auto reset and will be shortened to about 20ns with external Reset pulse.
2. Reset pulse is required to be partially inside the preamble.

Upstream Timing Diagram

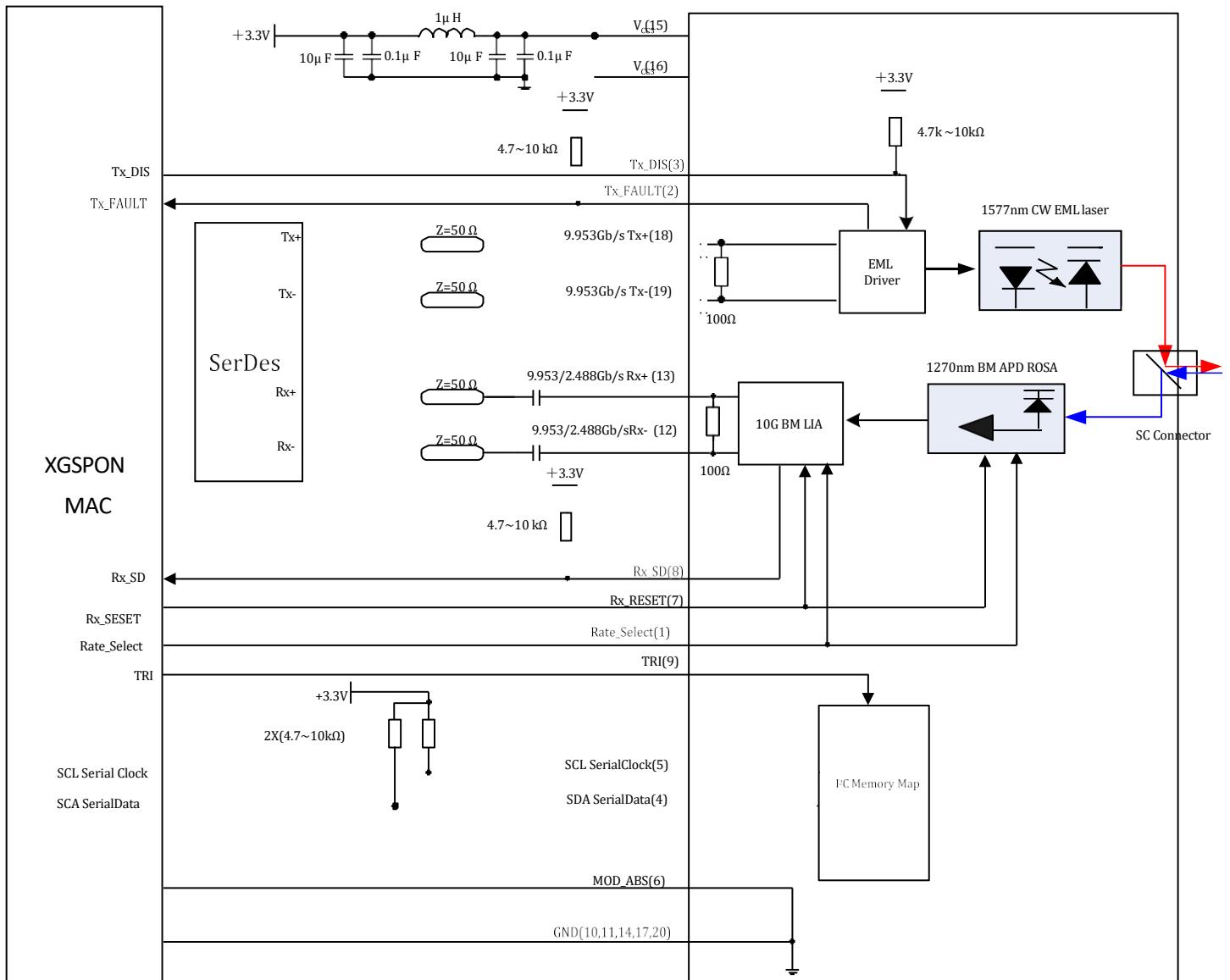


Digital RSSI Sample/Hold Timing

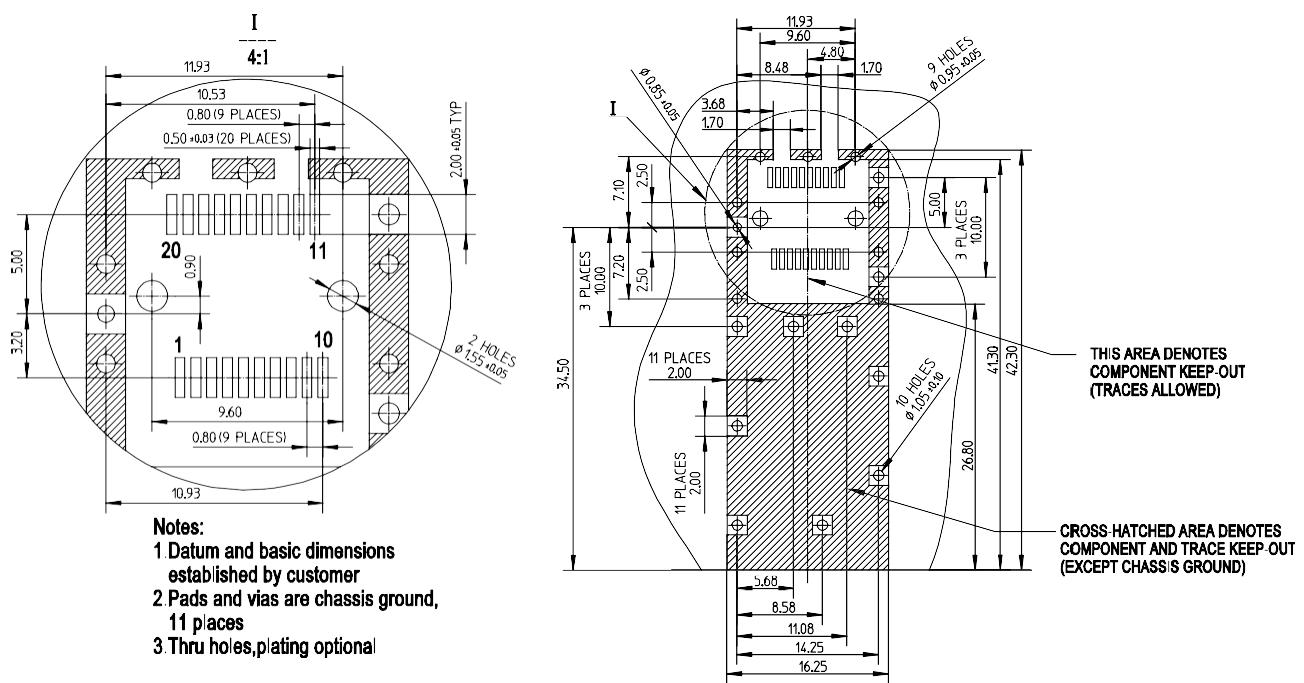
Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
I ² C Read Time	T _p	500			μs	
Optical Input Signal Width	T _{ont}	300			ns	
RSSI Monitor Range	P _{mon}	-30		-7	dBm	
RSSI Precision	P _{rssi}	-3	+/-2	3	dB	
RSSI Trigger Delay	T _{tri} (TRI Delay)	0	300		ns	
RSSI Trigger Width	T _{i2c} (TRI Width)	500		T _{ont} -T _{tri}	ns	

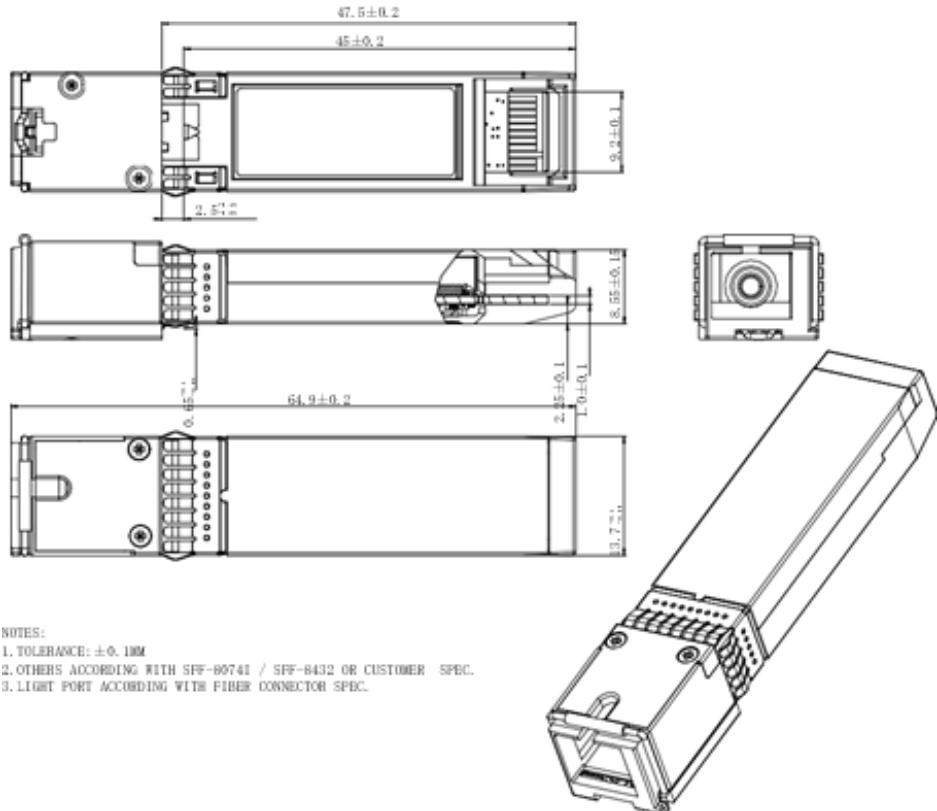

Note: T_{tri}+T_{i2c}<T_{ont}.

Digital RSSI Sample/Hold Timing Diagram

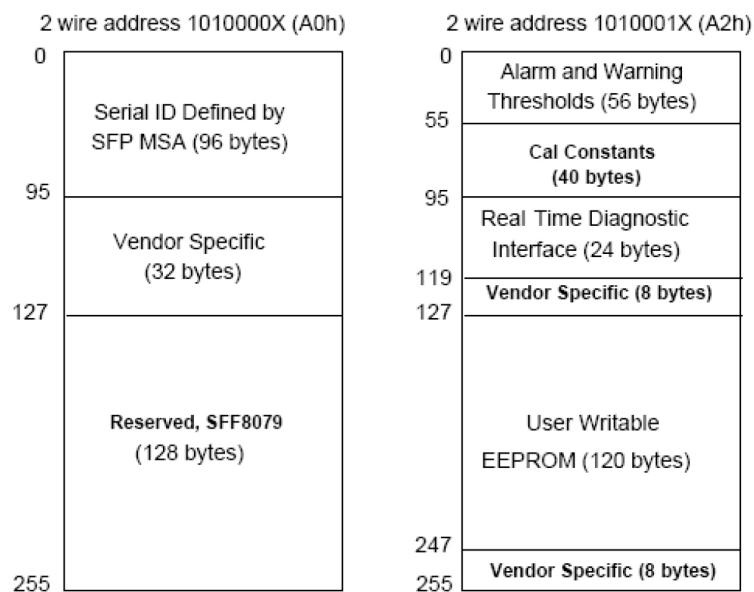


Pin Descriptions


Pin	Symbol	Name/Description	Note
1	Rate_Select	Rate Select. Dedicated upstream speed indication. High=10G. Low=2.5G.	
2	Tx_Fault	Transmitter Fault. Low = Normal Operation. High = Fault Indication.	
3	Tx_Disable	Transmit Disable. Low = Normal Operation. High = Disables Module.	
4	SDA	2-Wire Serial Interface Data.	
5	SCL	2-Wire Serial Interface Clock.	
6	MOD_ABS	Module Absent pin. Grounded inside the module.	
7	Rx_Reset	Rx_Reset Pulse Input for TIA/LIA.	
8	Rx_SD	Rx Signal Detect. Assert "high" when Burst Packet is coming.	
9	RSSI_Trigger	Receiver Signal Strength Indication Trigger Input.	
10	GND	Module Ground.	
11	GND	Module Ground.	
12	RD-	Receiver Inverted 9.953Gbps and 2.488Gbps Data Output. DC coupled inside the module.	
13	RD+	Receiver Non-Inverted 9.953Gbps and 2.488Gbps Data Output. DC coupled inside the module.	
14	GND	Module Ground.	
15	Vcc	+3.3V DC Power Supply Input.	
16	Vcc	+3.3V DC Power Supply Input.	
17	GND	Module Ground.	
18	TD+	Transmitter Non-Inverted 9.953Gbps Data Input.	
19	TD-	Transmitter Inverted 9.953Gbps Data Input.	
20	GND	Module Ground.	


Electrical Interface

SFP+ Connector Dimensions



Mechanical Specifications

EEPROM Information

EEPROM memory map-specific data field description is as below:

About ProLabs

Our extensive experience comes as standard. For over 20 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with more than 100 optical switching and transport platforms.

A Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 1.6T while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

The Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure compatible products, and immediate answers to your questions. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information

ProLabs US

Email: sales@prolabs.com
Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com
Telephone: +44 1285 719 600