

SFP-25GBASE-LR-20-EX-C

Extreme Networks® Compatible TAA 25GBase-LR SFP28 Transceiver (SMF, 1310nm, 20km, LC, DOM)

Features:

- SFF-8432 and SFF-8472 MSA Compliant
- Duplex LC Connector
- 1310nm un-cooled direct modulation laser
- PIN photodiode receiver with limiting amplifier
- 3.3V power supply
- Commercial Temperature 0 to 70 Celsius
- Support Hot Pluggable
- Metal with lower EMI
- Excellent ESD protection
- RoHS compliant and Lead Free

Applications:

- 25GBase Ethernet
- Access and Enterprise

Product Description

This Extreme Networks® compatible SFP28 transceiver provides 25GBase-LR throughput up to 20km over single-mode fiber (SMF) using a wavelength of 1310nm via an LC connector. It can operate at temperatures between 0 and 70C. Our transceiver is built to meet or exceed OEM specifications and is guaranteed to be 100% compatible with Extreme Networks®. It has been programmed, uniquely serialized, and tested for data-traffic and application to ensure that it will initialize and perform identically. All of our transceivers comply with Multi-Source Agreement (MSA) standards to provide seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S.-made or designated country end products.")

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Maximum Supply Voltage	Vcc	0		3.6	V	+3.3V
Storage Temperature	Tstg	-40		85	°C	
Operating Case Temperature	Tc	0	25	70	°C	
Optical Receiver Input	Pmax			5.5	dBm	Average

Electrical Characteristics

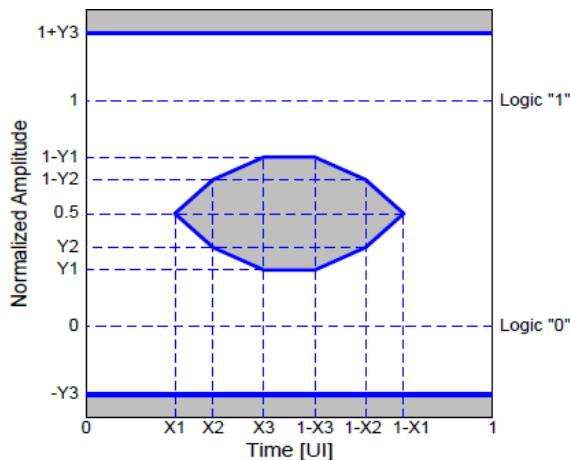
Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Power Supply Voltage	Vcc	3.135	3.30	3.465	V	
Power Supply Noise	Vrip			2 3	% %	DC – 1MHz 1 – 10MHz
Power Consumption	Pw			1.2	W	

High-Speed Electrical Characteristics

Parameter	Test Point	Min.	Typ.	Max.	Unit	Notes/Conditions
High-Speed Electrical Input Characteristics						
Overload Differential Voltage (pk-to-pk)	TP1a	900			mV	Calibrated at TP1a Note 3: Section 13.3.12
Differential Termination Mismatch	TP1			10	%	At 1 MHz Note 3: Section 13.3.6
Differential Return Loss (SDD11)	TP1			Note 1	dB	
Common-Mode to Differential Conversion and Differential to Common-Mode Conversion (SDC11, SCD11)	TP1			Note 2	dB	
High-Speed Electrical Output Characteristics						
Differential Voltage (pk-pk)	TP4			900	mV	
Common-Mode Noise (RMS)	TP4			17.5	mV	Note 6: Section 13.3.5
Differential Termination Mismatch	TP4			10	%	At 1MHz
Differential Return Loss (SDD22)	TP4			Note 4	dB	
Common-Mode to Differential Conversion and Differential to Common-Mode Conversion (SDC22, SCD22)	TP4			Note 5		
Transition Time (20-80%)	TP4	9.5			ps	Note 6: Section 13.3.10
Vertical Eye Closure (VEC)				5.5	dB	Note 6: Section 13.3.11
Eye Width at 10^{-15} Probability (EW15)	TP4	0.57			UI	Note 6: Section 13.3.11
Eye Height at 10^{-15} Probability (EH15)	TP4	228			mV	Note 6: Section 13.3.11

Notes:

1. SDD11, SDD22 < -11dB for $0.05 < f < fb/7$ ($fb=28GHz$).
SDD11, SDD22 < $-6.0 + 9.2 * \log_{10}(2f/fb)$ dB for $fb/7 < f < fb$ ($fb=28 GHz$).
2. SDC11, SCD11 < $-22 + 14 * (f/fb)$ dB for $0.05 < f < fb/2$ ($fb=28 GHz$).
SDC11, SCD11 < $-18 + 6 * f/fb$ dB for $fb/2 < f < fb$ ($fb=28 GHz$).
3. Ref. OIF-CEI-28G-VSR as described in Implementation Agreement OIF-CEI-03.1.
4. SDD11, SDD22 < -11dB for $0.05 < f < fb/7$ ($fb=28GHz$).
SDD11, SDD22 < $-6.0 + 9.2 * \log_{10}(2f/fb)$ dB for $fb/7 < f < fb$ ($fb=28 GHz$).
5. SDC22, SCD22 < $-25 + 20 * (f/fb)$ dB for $0.05 < f < fb/2$ ($fb=28 GHz$).
SDC22, SCD22 < $-18 + 6 * f/fb$ dB for $fb/2 < f < fb$ ($fb=28 GHz$).
6. Ref. OIF-CEI-28G-VSR as described in Implementation Agreement OIF-CEI-03.1.


Optical Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Transmitter						
Data Rate	DR		25.78125		Gbps	1
Signal Speed Variation from Nominal	Δf_D	-100		100	ppm	
Transmitter Center Wavelength	λ_C	1295	1310	1325	nm	
Average Launch Power	P_{avg}	-3		4	dBm	
Optical Output Power in OMA	OMA	-2		4	dBm	
Launch Power in OMA Minus TDP		-3			dBm	
Average Launch Power of Off Transmitter	P_{off}			-30	dBm	
Extinction Ratio	ER	3.0			dB	
Transmitter Eye Mask Definition		Figure Below				
Receiver						
Receiver Sensitivity in OMA	P_{minOMA}			-14	dBm	2, 3
Stressed Receiver Sensitivity in OMA	$P_{minSOMA}$			-11.5	dBm	2
Average Received Power	P_{Ravg}			+4.0	dBm	

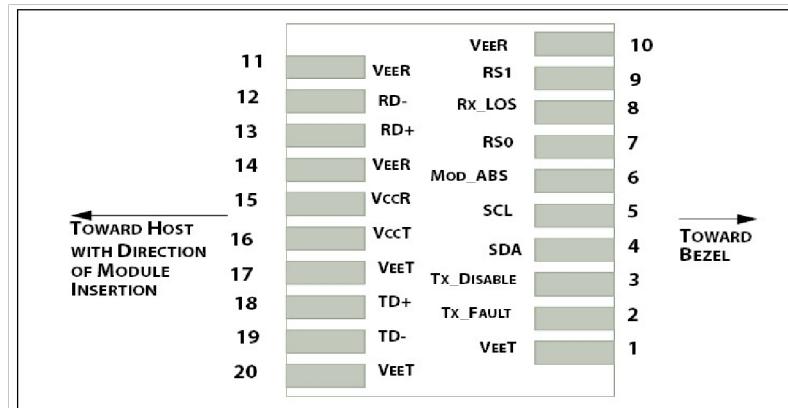
Notes:

1. Testing by data rate: NRZ at 25.78125Gbps, Mark Ratio 50%, and PRBS= $2^{31}-1$.
2. For BER 5×10^{-5} .
3. Receiver sensitivity in OMA is a normative specification.

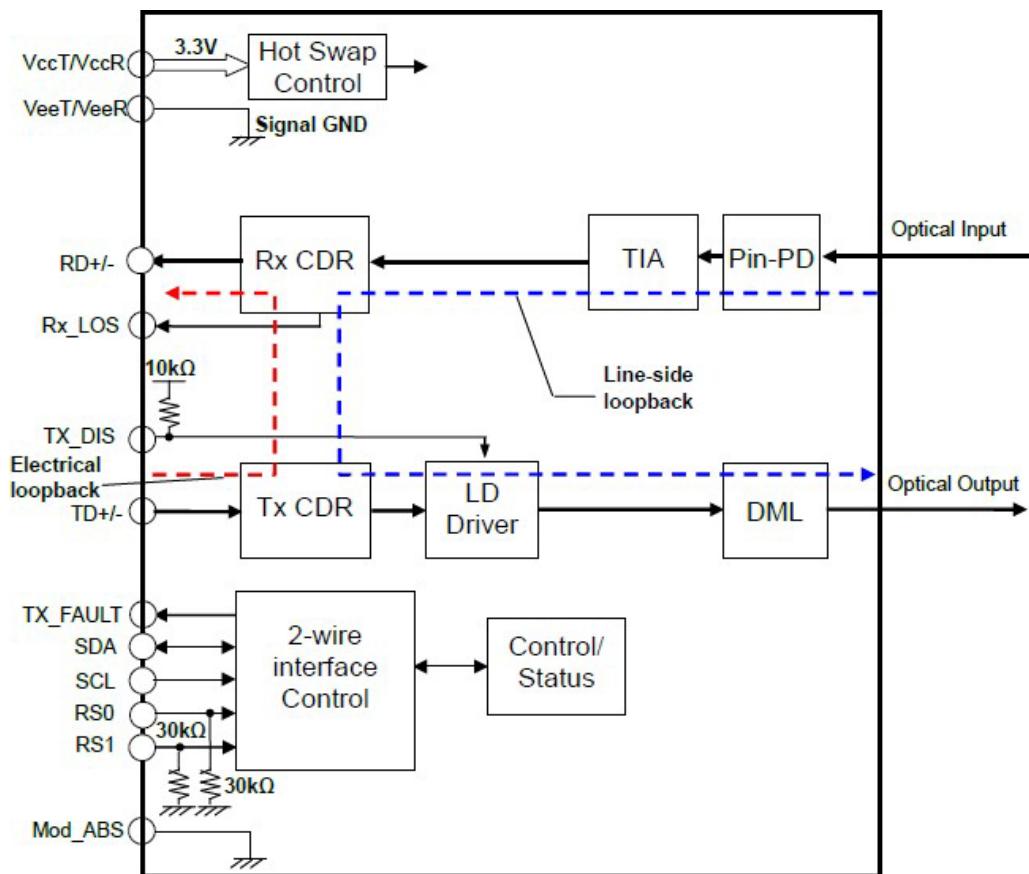
Mask of Optical Output Eye Diagram

X1	X2	X3	Y1	Y2	Y3	Maximum Hit Ratio (Note)
0.31	0.4	0.45	0.34	0.38	0.4	5×10^{-5}

Note: The acceptable ratio of samples inside to outside the hatched area (the "hit ratio") must be met.

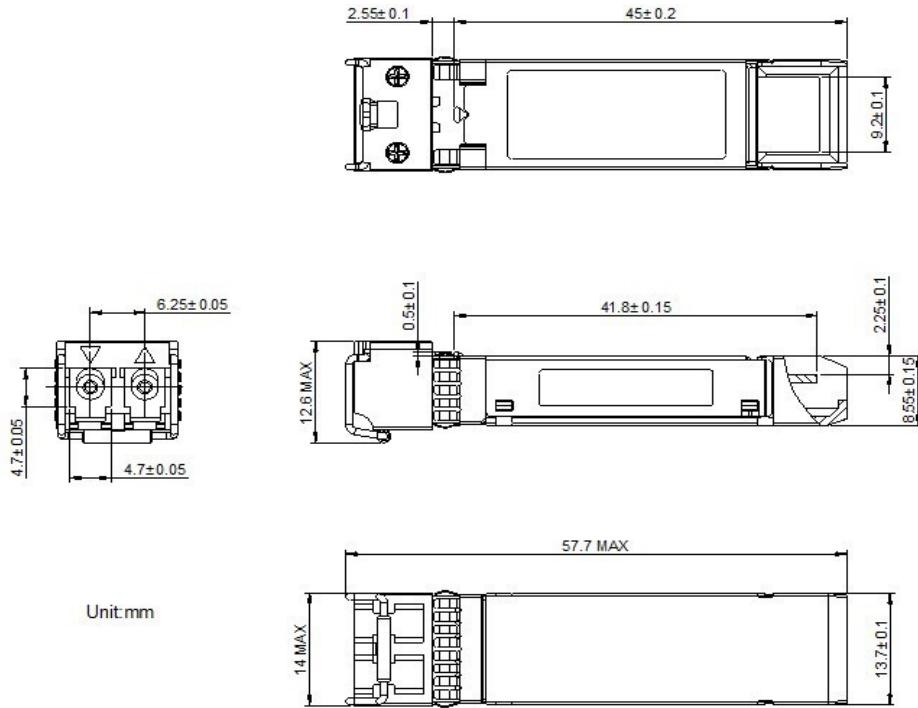

Pin Description

Pin	Symbol	Name/Description	Note
1	VeeT	Transmitter Ground.	1
2	Tx_Fault	Transmitter Fault. LVTTL-O. "High" indicates a fault condition.	2
3	Tx_Disable	Transmitter Disable. LVTTL-I. "High" or "open" disables the transmitter.	3
4	SDA	2-Wire Serial Interface Data. LVCMOS-I/O. MOD-DEF2.	4
5	SCL	2-Wire Serial Interface Clock. LVCMOS-I/O. MOD-DEF1.	4
6	MOD_ABS	Module Absent (Output). Connected to the VeeT or VeeR in the module.	5
7	RS0	N/A.	6
8	Rx_LOS	Receiver Loss of Signal. LVTTL-O.	2
9	RS1	N/A.	6
10	VeeR	Receiver Ground.	1
11	VeeR	Receiver Ground.	1
12	RD-	Inverse Received Data Out. CML-O.	
13	RD+	Received Data Out. CML-O.	
14	VeeR	Receiver Ground.	1
15	VccR	+3.3V Receiver Power.	
16	VccT	+3.3V Transmitter Power.	
17	VeeT	Transmitter Ground.	1
18	TD+	Transmitter Data In. CML-I.	
19	TD-	Inverse Transmitter Data In. CML-I.	
20	VeeT	Transmitter Ground.	1


Notes:

1. The module signal grounds are isolated from the module case.
2. This is an open collector/drain output that on the host board requires a 4.7kΩ to 10kΩ pull-up resistor to the Host_Vcc.
3. This input is internally biased high with a 4.7kΩ to 10kΩ pull-up resistor to the VccT.
4. 2-Wire Serial Interface Clock and Data lines require an external pull-up resistor dependent on the capacitance load.
5. This is a ground return that on the host board requires a 4.7kΩ to 10kΩ pull-up resistor to the Host_Vcc.
6. Rate Select can also be set through the 2-wire bus in accordance with SFF-8472 v. 12.1. Rx Rate Select is set at Bit 3, Byte 110, and Address A2h. Tx Rate Select is set at Bit 3, Byte 118, and Address A2h.

Note: Writing a "1" selects maximum bandwidth operation. Rate Select is the logic OR of the input state of Rate Select Pin and 2-wire bus.



Functional Block Diagram

Mechanical Specifications

Small Form Factor Pluggable (SFP) transceivers are compatible with the dimensions defined by the SFP Multi-Sourcing Agreement (MSA).

EEPROM Information

EEPROM memory map-specific data field description is as below:

2 wire address 1010000X (A0h)		2 wire address 1010001X (A2h)	
0	Serial ID Defined by SFP MSA (96 bytes)	0	Alarm and Warning Thresholds (56 bytes)
95	Vendor Specific (32 bytes)	55	Cal Constants (40 bytes)
127	Reserved, SFF8079 (128 bytes)	95	Real Time Diagnostic Interface (24 bytes)
255		119	Vendor Specific (8 bytes)
		127	
		247	User Writable EEPROM (120 bytes)
		255	Vendor Specific (8 bytes)

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information

ProLabs US

Email: sales@prolabs.com

Telephone: 952-852-0252

ProLabs UK

Email: salesupport@prolabs.com

Telephone: +44 1285 719 600