

SFP-25GB-DW19-10-I-C-C

Cisco® Compatible TAA 25GBase-DWDM SFP28 Transceiver C-Band 100GHz (SMF, 1562.23nm, 10km, LC, DOM, -40 to 85C)

Features:

- SFF-8432 and SFF-8472 Compliance
- Duplex LC Connector
- Single-mode Fiber
- Industrial Temperature -40 to 85 Celsius
- Hot Pluggable
- Metal with Lower EMI
- Excellent ESD Protection
- RoHS Compliant and Lead Free

Applications:

- 25x Gigabit Ethernet over DWDM

Product Description

This Cisco® compatible SFP28 transceiver provides 25GBase-DWDM throughput up to 10km over single-mode fiber (SMF) using a wavelength of 1562.23nm via an LC connector. It is capable of withstanding rugged environments and can operate at temperatures between -40 and 85C. Our transceiver is built to meet or exceed OEM specifications and is guaranteed to be 100% compatible with Cisco®. It has been programmed, uniquely serialized, and tested for data-traffic and application to ensure that it will initialize and perform identically. All of our transceivers comply with Multi-Source Agreement (MSA) standards to provide seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S.-made or designated country end products.")

SFP Channel Number and Wavelength

Channel	Frequency (THz)	Center Wavelength (nm)	Channel	Frequency (THz)	Center Wavelength (nm)
15	191.5	1565.50	39	193.9	1546.12
16	191.6	1564.68	40	194.0	1545.32
17	191.7	1563.86	41	194.1	1544.53
18	191.8	1563.05	42	194.2	1543.73
19	191.9	1562.23	43	194.3	1542.94
20	192.0	1561.42	44	194.4	1542.14
21	192.1	1560.61	45	194.5	1541.35
22	192.2	1559.79	46	194.6	1540.56
23	192.3	1558.98	47	194.7	1539.77
24	192.4	1558.17	48	194.8	1538.98
25	192.5	1557.36	49	194.9	1538.19
26	192.6	1556.55	50	195.0	1537.40
27	192.7	1555.75	51	195.1	1536.61
28	192.8	1554.94	52	195.2	1535.82
29	192.6	1554.13	53	195.3	1535.04
30	193.0	1553.33	54	195.4	1534.25
31	193.1	1552.52	55	195.5	1533.47
32	193.2	1551.72	56	195.6	1532.68
33	193.3	1550.92	57	195.7	1531.90
34	193.4	1550.12	58	195.8	1531.12
35	193.5	1549.32	59	195.9	1530.33
36	193.6	1548.51	60	196.0	1529.55
37	193.7	1547.72	61	196.1	1528.77
38	193.8	1546.92			

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Storage Temperature	Tstg	-40		85	°C	
Operating Case Temperature	Tc	-40		85	°C	
Supply Voltage	Vcc	-0.5		3.6	V	
Supply Current	Icc			606	mA	
Operating Relative Humidity	RH	5		85	%	

Electrical Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Supply Voltage	Vcc	3.15	3.3	3.45	V	
Transmitter						
CML Differential Inputs	VIN	40		1000	mVp-p	1
Input Differential Impedance	ZIN		100		Ω	2
Tx_Disable	Disable	2		Vcc+0.3	V	
	Enable	0		0.8	V	
Tx_Fault	Fault	2.4		Vcc+0.3	V	
	Normal	0		0.4	V	
Receiver						
CML Differential Outputs	VOUT	300		850	mV	3
Output Differential Impedance	ZOUT	85	100	115	Ω	
Rx_LOS	LOS	2.4		Vcc+0.3	V	
	Normal	0		0.4	V	

Notes:

1. AC coupled input. CML logic. Internally AC coupled.
2. RIN>100kΩ @ DC.
3. AC coupled output. CML logic. Internally AC coupled.

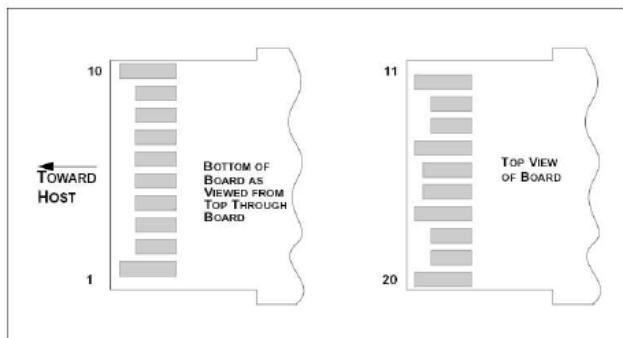
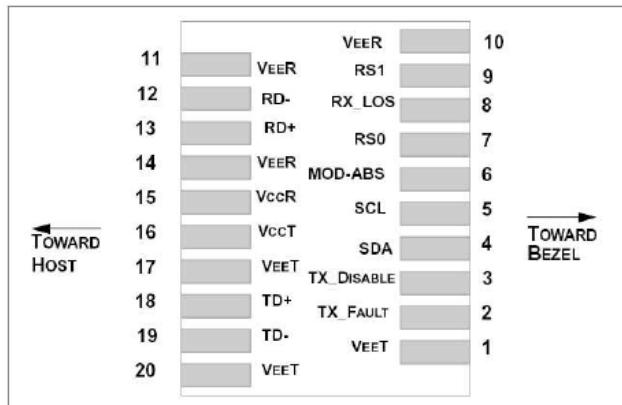
Optical Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Transmitter						
Center Wavelength Spacing			100		GHz	
			0.8		nm	
Side-Mode Suppression Ratio	SMSR	30			dB	
Average Output Power @25.78Gbps	POUT	-1		4	dBm	1
Extinction Ratio	ER	6			dB	
Receiver						
Receiver Sensitivity @25.78Gbps	Pmin			-14	dBm	2
Receiver Overload	Pmax	2			dBm	3
LOS De-Assert	LOSD			-17	dBm	
LOS Assert	LOSA	-30			dBm	
LOS Hysteresis		0.5			dB	
Optical Signal to Noise Ratio Tolerance	OSNR	33			dB	

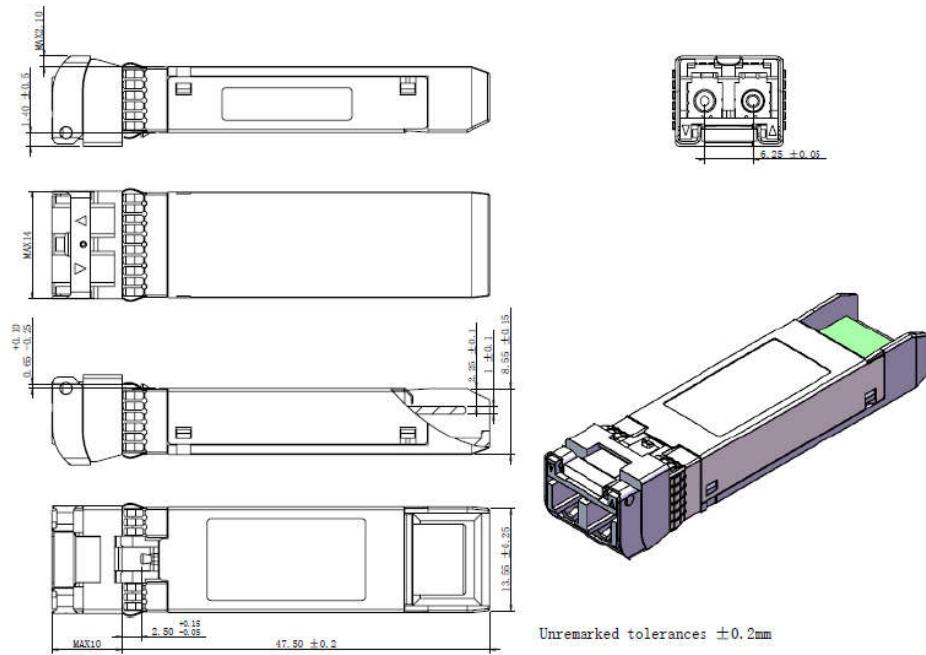
Notes:

1. Output is coupled into a 9/125 μ m single-mode fiber.
2. Minimum average optical power measured at the BER less than 5E⁻⁵. The measure pattern is PRBS 2³¹-1.
3. It's suggested to use a >3dB attenuator between the transmitter and receiver if testing Tx to Rx directly.

Pin Descriptions



Pin	Symbol	Name/Description	Plug Seq.	Notes
1	VeeT	Transmitter Ground.	1	5
2	Tx_Fault	Transmitter Fault Indication.	3	1
3	Tx_Disable	Transmitter Disable. Module disables on "high" or "open."	3	2
4	SDA	Module Definition 2. Data Line for Serial ID.	3	3
5	SCL	Module Definition 1. Clock Line for Serial ID.	3	3
6	MOD_ABS	Module Definition 0.	3	3
7	RS0	Rx Rate Select (LVTTL).	3	9
8	Rx_LOS	Loss of Signal.	3	4
9	RS1	Tx Rate Select (LVTTL).	1	10
10	VeeR	Receiver Ground.	1	5
11	VeeR	Receiver Ground.	1	5
12	RD-	Inverse Received Data Out.	3	6
13	RD+	Received Data Out.	3	7
14	VeeR	Receiver Ground.	1	5
15	VccR	$3.3 \pm 5\%$ Receiver Power.	2	7
16	VccT	$3.3 \pm 5\%$ Transmitter Power.	2	7
17	VeeT	Transmitter Ground.	1	5
18	TD+	Transmitter Data In.	3	8
19	TD-	Inverse Transmitter Data In.	3	8
20	VeeT	Transmitter Ground.	1	5

Notes:


1. Tx_Fault is an open collector/drain output that should be pulled up with a $4.7\text{k}\Omega$ to $10\text{k}\Omega$ resistor on the host board. Pull-up voltage between 2.4V and VccT/R+0.3V. When "high," output indicates a laser fault of some kind. "Low" indicates normal operation. In the "low" state, the output will be pulled to $<0.4\text{V}$.
2. Tx_Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7\text{k}\Omega$ to $10\text{k}\Omega$ resistor. Its states are:
 - Low (-0.3V – 0.8V): Transmitter On.
 - Between (>0.8V and <2.0V): Undefined.
 - High (2.0V – VccT/R+0.3V): Transmitter Disabled.
 - Open: Transmitter Disabled.
3. Module Absent. Connected to the VeeT or VeeR in the module.
4. Rx_LOS (Loss of Signal) is an open collector/drain output that should be pulled up with a $4.7\text{k}\Omega$ to $10\text{k}\Omega$ resistor. Pull-up voltage between 2.4V and VccT/R+0.3V. When "high," this output indicates that the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). "Low" indicates normal operation. In the "low" state, the output will be pulled to $<0.4\text{V}$.

5. VeeR and VeeT may be internally connected within the SFP28 module.
6. RD-/+. These are the differential receiver outputs. They are AC-coupled, 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board. The voltage swing on these lines will be between 225mV and 525mV single-ended, when properly terminated.
7. VccR and VccT are the receiver and transmitter power supplies. They are defined as $3.3V \pm 5\%$ at the SFP + connector pin. Maximum supply current is 606mA. Indicators with DC resistance of less than 1Ω should be used in order to maintain the required voltage at the SFP28 input pin with 3.3V supply voltage. When the recommended supply filtering network is used, hot-plugging of the SFP28 transceiver module will result in an in-rush current of no more than 30mA greater than the steady state value. VccR and VccT may be internally connected within the SFP28 transceiver module.
8. TD-/+. These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential terminations inside the module. The AC coupling is done inside the module and is thus not required on the host board. The inputs will accept swings of 20mV to 50mV (single-ended), though it is recommended that values between 90mV and 900mV (single-ended) be used for best EMI performance.
9. This pin has an internal 47k pull-down to ground. RS0=1 sets Rx CDR enable, while RS0=0 sets Rx CDR bypass.
10. This pin has an internal 47k pull-down to ground. RS1=1 sets Tx CDR enable, while RS1=0 sets Tx CDR bypass.

Electrical Pad Layout

Mechanical Specifications

All dimensions are $\pm 0.2\text{mm}$ unless otherwise specified.

Unit: mm

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information

ProLabs US

Email: sales@prolabs.com

Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com

Telephone: +44 1285 719 600