

Q28-100GP4-BXD94-40-I-HW2-C

Huawei® Compatible TAA 100GBase-BX ER1 PAM4 QSFP28 Transceiver Single Lambda (SMF, 1309.14nmTx/1304.58nmRx, 40km, LC, DOM, -40 to 85C)

Features:

- SFF-8636 Rev. 2.10a Compliant
- QSFP28 MSA Compliant
- 100G Lambda MSA 100G-ER1 Specification Compliant
- Supports 100Gbps with 4x25G Electrical Interface
- Bidi LC Receptacles
- Industrial Temperature -40 to 85 Celsius
- Single 3.3V Power Supply
- Power Dissipation:
- SMF with Inbuild KP4 FEC
- RoHS Compliant and Lead Free

Applications:

- 100GBase Ethernet
- Datacenter

Product Description

This Huawei® compatible QSFP28 transceiver provides 100GBase-BX ER1 throughput up to 40km over single-mode fiber (SMF) PAM4 using a wavelength of 1309.14nmTx/1304.58nmRx via an LC connector. This bidirectional unit must be used with another transceiver or network appliance of complementing wavelengths. It can operate at temperatures between -40 and 85C. Our transceiver is built to meet or exceed OEM specifications and is guaranteed to be 100% compatible with Huawei®. It has been programmed, uniquely serialized, and tested for data-traffic and application to ensure that it will initialize and perform identically. All of our transceivers comply with Multi-Source Agreement (MSA) standards to provide seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S.-made or designated country end products."

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Storage Temperature	T _{stg}	-40		85	°C	
Operating Case Temperature	T _c	-40		85	°C	
Relative Humidity	RH	15		85	%	
Supply Voltage	V _{cc}	-0.5		3.6	V	
Data Rate	DR		53.125 ± 100ppm			
Bit Error Rate	BER			2.4E ⁻⁴		1
Supported Link Length on 9/125µm SMF @53.125GBd	L			40	km	2

Notes:

1. Tested with a PRBS31Q test pattern for 53.125GBd operation.
2. Distance is based on FC-PI-6 Rev. 3.1 and IEEE 802.3 standards with FEC.

Electrical Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Power Supply Voltage	V _{cc}	3.13	3.3	3.47	V	
Power Supply Current	I _{cc}			1435	mA	
Power Dissipation	P _{DISS}			4500	mW	
Transmitter						
Input Differential Impedance	Z _{IN}	90	100	110	Ω	
Differential Data Input Swing	V _{IN,pp}	180		900	mVp-p	
Receiver						
Output Differential Impedance	Z _{OUT}	90	100	110	Ω	
Differential Data Input Swing	V _{OUT,pp}	300		900	mVp-p	

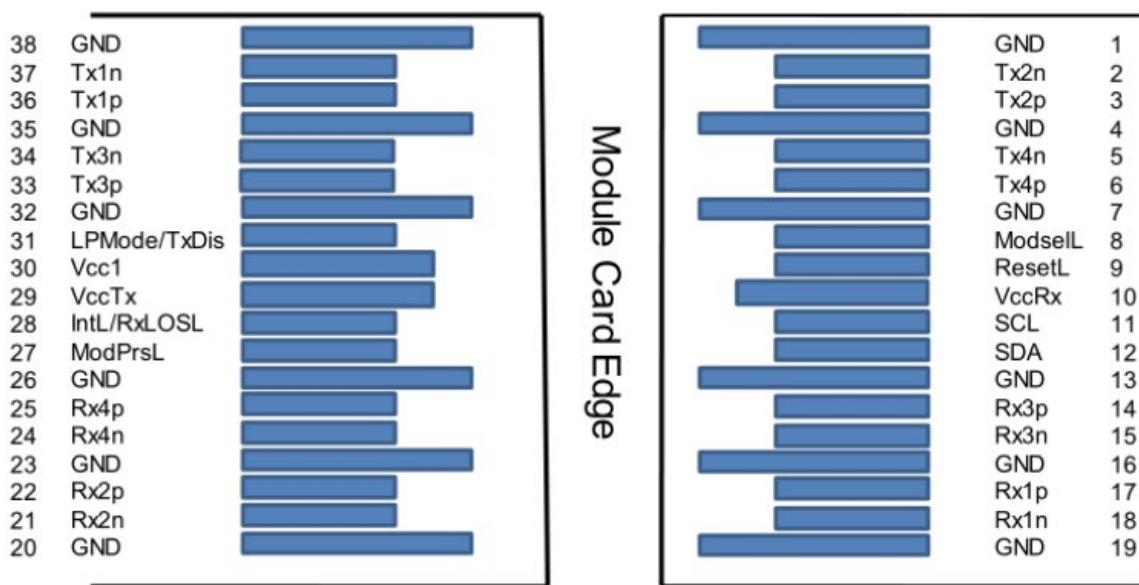
Optical Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Transmitter						
Center Wavelength Range	λ C	1308.09	1309.14	1310.19	nm	
Average Launch Optical Power	P _o	1.7		7.1	dBm	1
Launch Optical Power (OMA)	POMA	4.7		7.9	dBm	2
		3.3+TDECQ				3
Extinction Ratio	ER	5			dB	
Transmitter and Dispersion Penalty Eye Closure for PAM4	TDECQ			3.9	dB	
RIN₁₅OMA (Maximum)	RIN			-136	dB/Hz	
Optical Return Loss Tolerance	ORLT			15	dB	
POUT @Tx_Disable Asserted	P _{off}			-15	dBm	
Receiver						
Center Wavelength	λ C	1303.54	1304.58	1305.63	nm	
Receiver Power (Pave)		-16		-3.4	dBm	
Receiver Sensitivity (OMA)	RxSENS_OMA			-13.8	dBm	
				-15.2+TECQ	dBm	2
Receiver Sensitivity (Pave)	RxSENS_Pave			-14	dBm	4
				-15.4+TECQ	dBm	
Receiver Reflectance				-26	dB	
LOS De-Assert	LOSD			-16	dBm	
LOS Assert	LOSA	-24			dBm	
LOS Hysteresis		0.5			dB	

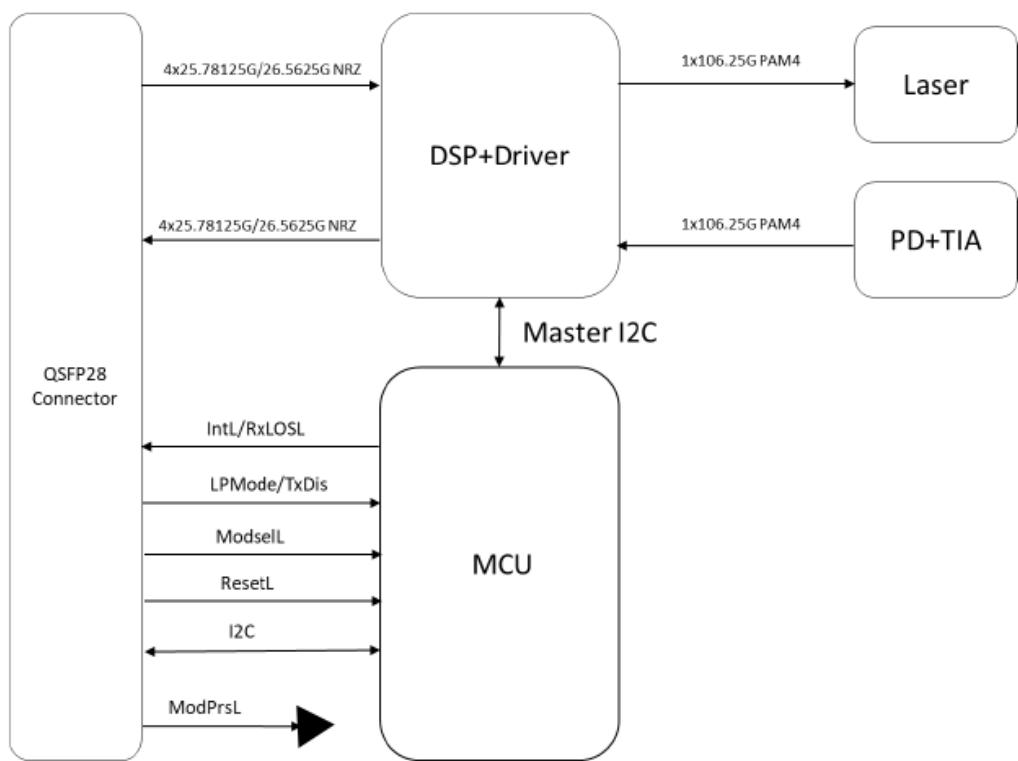
Notes:

1. Class 1 Laser Safety per FDA/CDRH and EN (IEC) 60825 regulations.
2. TDECQ < 1.4dB.
3. 1.4dB ≤ TDECQ ≤ TDECQ (maximum).
4. 1.4dB ≤ TDECQ ≤ 3.9dB.
5. Measured with PRBS31Q test pattern @53.125GBd with BER<2.4E⁻⁴.

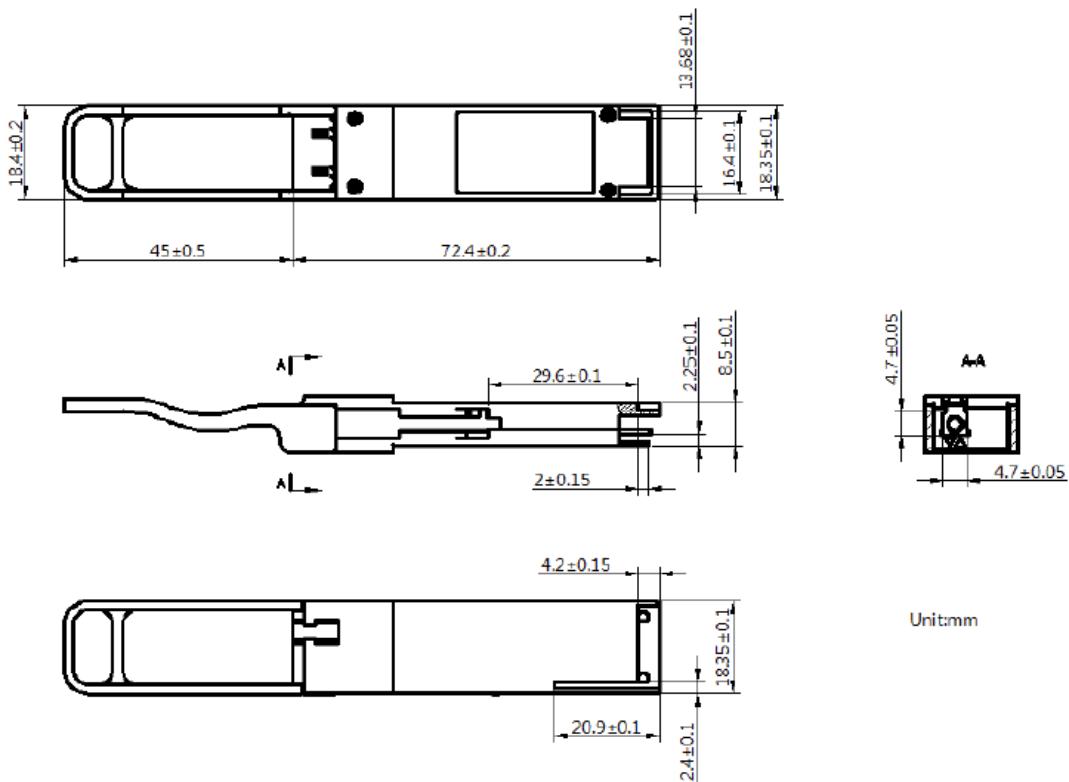
Pin Descriptions


Pin	Logic	Symbol	Name/Description	Notes
1		GND	Module Ground.	1
2	CML-I	Tx2-	Transmitter Inverted Data Input.	
3	CML-I	Tx2+	Transmitter Non-Inverted Data Input.	
4		GND	Module Ground.	1
5	CML-I	Tx4-	Transmitter Inverted Data Input.	
6	CML-I	Tx4+	Transmitter Non-Inverted Data Input.	
7		GND	Module Ground.	1
8		ModSelL	Module Select.	2
9		ResetL	Module Reset.	2
10		VccRx	+3.3V Receiver Power Supply.	
11		SCL	2-Wire Serial Interface Clock.	2
12		SDA	2-Wire Serial Interface Data.	2
13		GND	Module Ground.	1
14	CML-O	Rx3+	Receiver Non-Inverted Data Output.	
15	CML-O	Rx3-	Receiver Inverted Data Output.	
16		GND	Module Ground.	1
17	CML-O	Rx1+	Receiver Non-Inverted Data Output.	
18	CML-O	Rx1-	Receiver Inverted Data Output.	
19		GND	Module Ground.	1
20		GND	Module Ground.	1
21	CML-O	Rx2-	Receiver Non-Inverted Data Output.	
22	CML-O	Rx2+	Receiver Inverted Data Output.	
23		GND	Module Ground.	1
24	CML-O	Rx4-	Receiver Inverted Data Output.	
25	CML-O	Rx4+	Receiver Non-Inverted Data Output.	
26		GND	Module Ground.	1
27		ModPrsL	Module Present.	
28		IntL/RxLOSL	Interrupt. Optionally configurable as RxLOSL via the management interface (SFF-8636).	2
29		VccTx	+3.3V Transmitter Power Supply.	
30		Vcc1	+3.3V Power Supply.	
31		LPMode/TxDis	Low Power Mode. Optionally configurable as TxDis via the management interface (SFF-8636).	2
32		GND	Module Ground.	1
33	CML-I	Tx3+	Transmitter Non-Inverted Data Input.	

34	CML-I	Tx3-	Transmitter Inverted Data Input.	
35		GND	Module Ground.	1
36	CML-I	Tx1+	Transmitter Non-Inverted Data Input.	
37	CML-I	Tx1-	Transmitter Inverted Data Input.	
38		GND	Module Ground.	1


Notes:

1. GND is the symbol for signal and supply (power) common for the module. All are common within the module, and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.
2. VccRx, Vcc1, and VccTx are applied concurrently and may be internally connected within the module in any combination. Vcc contacts in SFF-8662 and SFF-8672 each have a steady state current rating of 1A.


Module Pad Layout

Block Diagram of Transceiver

Mechanical Specifications

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information

ProLabs US

Email: sales@prolabs.com

Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com

Telephone: +44 1285 719 600