

J9054B-85-C

HP® Compatible TAA 100Base-FX SFP Transceiver (MMF, 850nm, 2km, LC, DOM)

Features:

- INF-8074 and SFF-8472 Compliance
- Duplex LC Connector
- Multi-mode Fiber
- Commercial Temperature 0 to 70 Celsius
- Hot Pluggable
- Metal with Lower EMI
- Excellent ESD Protection
- RoHS Compliant and Lead Free

Applications:

- 100Base Ethernet
- Access and Enterprise

Product Description

This HP® compatible SFP transceiver provides 100Base-FX throughput up to 2km over multi-mode fiber (MMF) using a wavelength of 850nm via an LC connector. It can operate at temperatures between 0 and 70C. Our transceiver is built to meet or exceed OEM specifications and is guaranteed to be 100% compatible with HP®. It has been programmed, uniquely serialized, and tested for data-traffic and application to ensure that it will initialize and perform identically. All of our transceivers comply with Multi-Source Agreement (MSA) standards to provide seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S.-made or designated country end products.")

Absolute Maximum Ratings

Parameter		Symbol	Min.	Тур.	Max.	Unit
Storage Temperatu	ıre	Tstg	-40		+85	°C
Supply Voltage		Vcc	-0.5		3.6	V
Operating Relative Humidity					+95	%
Operating Case Temperature		Тс			+70	°C
Power Supply Voltage		Vcc	3.15	3.3	3.45	V
Power Supply Current		Icc			300	mA
Data Rate F	E			125		Mbps

Electrical Characteristics

Electrical characteristics								
Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes	
Transmitter								
LVPECL Differential Inputs		VIN	400		2000	mVp-p	1	
Input Differential Impedance		ZIN	85	100	115	Ω	2	
Tx_Disable		Disable		2		Vcc+0.3	V	
		Enable		0		0.8		
Tx_Fault Fault Normal		Fault		2		Vcc+0.3	V	
			0		0.5			
Receiver								
LVPECL Differential Outputs		VOUT	400		2000	mVp-p	1	
Output Impedance		ZOUT	85	100	115	Ω		
Rx_LOS	LOS			2		Vcc+0.3	V	
	Norm	nal		0		0.8	V	
MOD_DEF(0:2)		VOH	2.5			V	3	
		VOL	0		0.5	V		

Notes:

- 1. LVPECL logic, internally AC coupled.
- 2. RIN>100k Ω at DC.
- 3. With serial ID.

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Center Wavelength	λC	830	850	860	nm	
Spectral Width (RMS)	Δλ			0.85	nm	
Average Output Power	POUT	-9.5		-4	dBm	1
Extinction Ratio	ER	8.2			dB	2
Rise/Fall Time (20-80%)	Tr/Tf			3	ns	
Total Jitter	ΤJ			1	ns	2
Tx_Disable Assert Time	t_off			10	us	
Output Optical Eye		IEEE 802.3 Compliant				
Receiver						
Center Wavelength	λС	760		860	nm	
Receiver Sensitivity	Pmin			-18	dBm	3
Receiver Overload	Pmax	-3			dBm	
Return Loss		14			dB	
LOS De-Assert	LOSD			-19	dBm	
LOS Assert	LOSA	-45			dBm	
LOS Hysteresis	LOSH	0.5			dB	

Notes:

- 1. Output power is measured by coupling into a $62.5/125\mu m$ multi-mode fiber.
- 2. Filtered, measured with a PRBS 2⁷-1 test pattern @125Mbps.
- 3. Minimum average optical power is measured by coupling into a $62.5/125\mu m$ multi-mode fiber. The BER is less than $1E^{-12}$ or lower, measured with a 2^7-1 NRZ PRBS and ER=9dB.
- 4. Eye pattern mask.

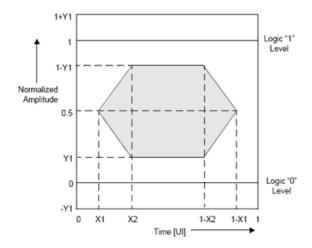
Pin Descriptions

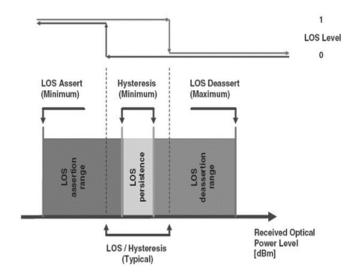
Pin	Symbol	Name/Description	Plug Sequence	Notes
1	VeeT	Transmitter Ground.	1	
2	Tx_Fault	Transmitter Fault Indication.	3	1
3	Tx_Disable	Transmitter Disable. Module disables on "high" or "open."	3	2
4	MOD_DEF2	Module Definition 2. Data Line for Serial ID.	3	3
5	MOD_DEF1	Module Definition 1. Clock Line for Serial ID.	3	3
6	MOD_DEF0	Module Definition 0. Grounded within the module.	3	3
7	Rate Select	Not Connected.	3	
8	LOS	Loss of Signal.	3	4
9	VeeR	Receiver Ground.	1	5
10	VeeR	Receiver Ground.	1	5
11	VeeR	Receiver Ground.	1	5
12	RD-	Inverted Received Data Out.	3	6
13	RD+	Received Data Out.	3	
14	VeeR	Receiver Ground.	1	5
15	VccR	3.3 ± 5% Receiver Power.	2	7
16	VccT	3.3 ± 5% Transmitter Power.	2	7
17	VeeT	Transmitter Ground.	1	5
18	TD+	Transmit Data In.	3	8
19	TD-	Inverted Transmit Data In.	3	8
20	VeeT	Transmitter Ground.	1	5

Notes:

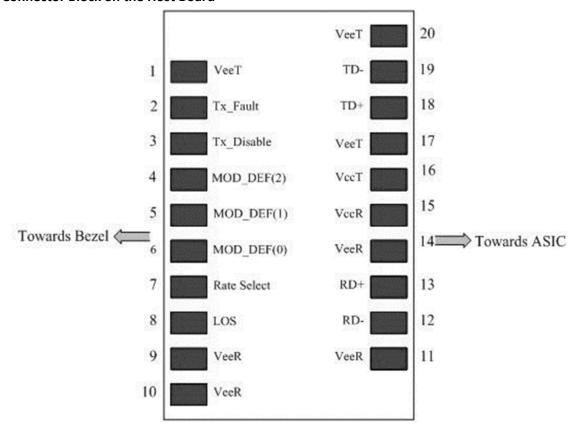
- 1. Tx_Fault is an open collector/drain output that should be pulled up with a $4.7k\Omega$ to $10k\Omega$ resistor on the host board. Pull-up voltage between 2.0V and VccT,R+0.3V. When "high," output indicates a laser fault of some kind. "Low" indicates normal operation. In the "low" state, the output will be pulled to <0.8V.
- 2. Tx_Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k\Omega$ to $10k\Omega$ resistor. Its states are:

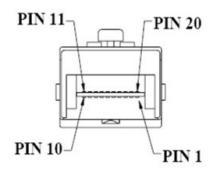
Low (0V - 0.8V): Transmitter On

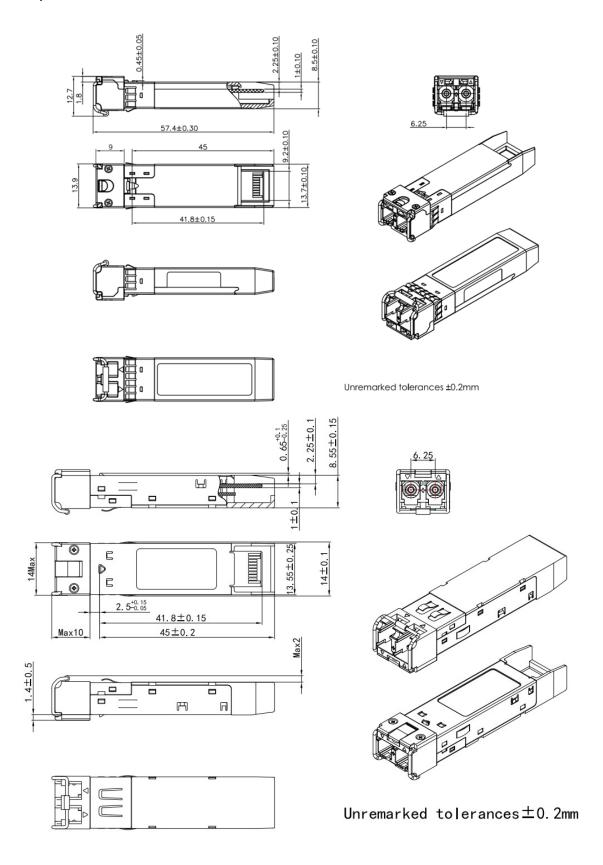

(>0.8V, <2.0V): Undefined


High (2.0V – 3.465V): Transmitter Disabled

Open: Transmitter Disabled.


- 3. Modulation absent. Connected to the VeeT or VeeR in the module.
- 4. LOS (Loss of Signal) is an open collector/drain output that should be pulled up with a $4.7k\Omega$ to $10k\Omega$ resistor. Pull-up voltage between 2.0V and VccT/R+0.3V. When "high," this output indicates that the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). "Low" indicates normal operation. In the "low" state, the output will be pulled to <0.8V.
- 5. VeeR and VeeT may be internally connected within the SFP module.


- 6. RD-/+. These are the differential receiver outputs. They are AC-coupled, 100Ω differential lines that should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board. The voltage swing on these lines will be between 400mV and 2000mV differential (200mV and 1000mV single-ended) when properly terminated.
- 7. VccR and VccT are the receiver and transmitter power supplies. They are defined as $3.3V \pm 5\%$ at the SFP connector pin. Maximum supply current is 300mA. Recommended host board power supply filtering is shown below. Inductors with DC resistance of less than 1Ω should be used in order to maintain the required voltage at the SFP input pin with 3.3V supply voltage. When the recommended supply-filtering network is used, hot-plugging of the SFP transceiver module will result in an in-rush current of no more than 30mA greater than the steady state value. VccR and VccT may be internally connected within the SFP transceiver module.
- 8. TD-/+. These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board. The inputs will accept differential swings of 400mV-2000mV (200mV-1000mV single-ended).



Pin-Out of Connector Block on the Host Board

Mechanical Specifications

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information

ProLabs US

Email: sales@prolabs.com Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com Telephone: +44 1285 719 600